CMR Header

CCMC Metadata Registry (CMR)

Menu Page

Go to:

CMR: View Simulation Model Info

GL (1)

Gibson-Low flux rope CME model

Model Description

The GL model in its original form, describes the self similar expansion of a three-dimensional flux rope from the solar corona that offers a description of CMEs. The GL magnetic field takes the form of a closed magnetic flux rope which for our purpose is linearly superimposed on the background field of the AWSoM coronal and anchored (line tied) to the inner boundary of the model. The GL model also includes a density structure characterized by cold dense plasma located over the polarity inversion line surrounded by hot low-density plasma the fills the upper extremity of the flux rope. This density structure is embedded in the coronal model along with the magnetic field to produce a filament-cavity structure commonly observed to give rise to CMEs. Thus the GL model has the capability of reproducing both the magnetic and density structures of CMEs continuously from the low corona to Earth and beyond (e.g. Manchester et al. 2004a Manchester et al. 2014). With the GL flux rope inserted in the corona, the eruption occurs immediately from an initial state of force imbalance due to the magnetic pressure of the flux rope. Thus model eruption is entirely impulsive and lacks a gradual buildup or low acceleration of slow CMEs. However, the model quickly relaxes to realistic levels of CME deceleration after traveling to a distance of approximately 5 Rs from the solar surface.

Model Figure(s) :

Model Inputs Description

The GL model is specified by a just a few parameters. First is the location and orientation of the flux rope on the solar surface. EEGGL allows the end-user specify the source region for the CME by identifying the originating active region as seen in a global synoptic magnetogram. The user clicks on the main negative and positive magnetic polarities of the active region for which EEGGL calculates the flux weighted centroid and provides its location (longitude and latitude in Carrington coordinates). EEGGL also performs a spline fit to the polarity inversion line and provides its orientation angle as measured relative to the solar equator. The location and orientation angle are provided as input parameters for the CME model so that GL flux rope is centered in the active region and the polarity inversion line of the rope coincides with that of the active region. Thus the filament material of the model will also be in the appropriate location.

The remaining parameters are the flux rope radius and field strength parameters. The radius is simply the radius of the sphere that contains the toroidal flux rope of the GL model. EEGGL scales the size of the flux rope to be proportional to the length of the polarity inversion line, and large enough to roughly fill the closed field region over the active region. The field strength is calculated by EEGGL to reproduce the CME speed in the low corona as provided by Stereo-CAT. This calculation is based on an empirical relationship between CME speed and the amount of reconnected magnetic flux in CME ejected flux ropes as measured in the associated flare ribbons.

The CME region should have refinement at level 6, extending +-40 degrees of the GL flux rope in longitude and +-20 degrees of the GL flux rope in latitude, and extend in radius is from 1.1 to 20.0. This refined grid region is specified by the AMRREGION type CMEbox as shown below. The IH grid show should also be refined, with the same angular extent as the SC grid, but extending from the IH inner boundary near 20 Rs to 1 AU, with a grid resolution of 0.5 Rs.

#AMRREGION
CMEbox
box_gen
1.1 RadiusMin (fixed)
-40.0 LongMin
-20.0 LatMin
20.0 RaduisMax (fixed)
40.0 LongMax
20.0 LatMax

Model Outputs Description

Output is used or part of the EEGGL tool (See Model Caveats)

Model Caveats

This scientific model for the Coronal Mass Ejection eruptions from the solar atmosphere is a science/physics basis for and part of the EEGGL tool, which in its turn is part of the SWMF AWSoM CME model submission on RoR system  – it's not a separate model used by CCMC users, nor in RoR separately

Change Log


	
	 
	

Model Acknowledgement/Publication Policy (if any)


	
	
	

Model Domains:

Solar

Space Weather Impacts:

Phenomena :

Simulation Type(s):

Physics-based

Temporal Dependence Possible? (whether the code results depend on physical time?)

true

Model is available at?

CCMC

Source code of the model is publicly available?

false

CCMC Model Status (e.g. onboarding, use in production, retired, only hosting output, only source is available):

production

Code Language:


Regions (this is automatically mapped based on model domain):

Sun

Contacts :

Sandro.Taktakishvili, ModelHostContact

Acknowledgement/Institution :

Relevant Links :

SWMF website: http://csem.engin.umich.edu/
Eruptive Event Generator (Gibson and Low) - EEGGL: https://ccmc.gsfc.nasa.gov/analysis/EEGGL/
Stereo CAT: https://ccmc.gsfc.nasa.gov/analysis/stereo/

Publications :

Model Access Information :

Linked to Other Spase Resource(s) (example: another SimulationModel) :

CMR Footer

Curator: Chiu Wiegand | NASA Official: Dr. Masha Kuznetsova | Privacy and Security Notices | Accessibility | CCMC Data Collection Consent Agreement