CMR Header

CCMC Metadata Registry (CMR)

Menu Page

Go to:

CMR: View Simulation Model Info

RAM-SCB (v.2.2)

Ring current Atmosphere interaction Model (RAM) with Self-Consistent Magnetic Field (B) (SCB)

Model Description

The RAM‐SCB model includes two fully coupled modules: a kinetic ring current‐atmosphere interaction model (RAM) [Jordanova et al., 1994, 2006, 2010; Engel et al., 2019] self‐consistently coupled with a 3‐D equilibrium magnetic field (B) code [Zaharia et al., 2004, 2006, 2010; Engel et al., 2019]. It has been validated via a variety of spaceborne observations and geomagnetic indices [e.g., Yu et al., 2012, 2019]. The model determines the magnetic field configuration in three dimensions and the particle distribution functions Ql(R,ϕ,E,α) from bounce‐averaged Fokker‐Planck equations for both ring current ions and electrons in the equatorial plane: where Ql (l represents different species) is a function of radial distance (R), geomagnetic longitude (ϕ), energy (E), and pitch angle (α). The default grid spans 2 to 6.5 Re in radius with a spatial resolution of 0.25 Re, a longitude resolution of 15°. The energy grid is logarithmically-spaced (default 35 steps) between 0.15 and 400 keV, and the pitch angle grid covers 0 to 90° (default 72 linear steps).

Model Figure(s) :

Model Inputs Description

Initial fluxes - usually taken from measurements at quiet times, such as from Van Allen Probes
SCB's magnetic field boundary is usually taken from a magnetic field model or global MHD simulations
RAM's plasma boundary is usually taken from GEO observations or other model outputs at 6.5 Re

Model Outputs Description

ion and electron fluxes (0.15 - 400 keV) as a function of radial distance, local time, energy, pitch angle; 
also time dependent 3-D magnetic field configurations 

Model Caveats

This RoR version uses Kp-dependent Volland-Stern electric field and statistical plasma boundary models.

Change Log


	
	 
	

Model Acknowledgement/Publication Policy (if any)

Please acknowledge the software repository https://github.com/lanl/RAM-SCB and cite the code archive at https://doi.org/10.5281/zenodo.6977287

Model Domains:

Magnetosphere.Inner_Magnetosphere.RingCurrent

Space Weather Impacts:

Near-earth radiation and plasma environment (aerospace assets functionality)

Phenomena :

Inner_Magnetosphere_Plasma_and_Field_Dynamics

Simulation Type(s):

Physics-based

Temporal Dependence Possible? (whether the code results depend on physical time?)

true

Model is available at?

CCMC

Source code of the model is publicly available?

true

CCMC Model Status (e.g. onboarding, use in production, retired, only hosting output, only source is available):

production

Code Language:

Fortran

Regions (this is automatically mapped based on model domain):

Earth.Magnetosphere

Contacts :

Steven.K.Morley, ModelContact
Vania.K.Jordanova, ModelDeveloper
Yihua.Zheng, ModelHostContact

Acknowledgement/Institution :

LANL (link to: https://www.lanl.gov/)

Relevant Links :

The SHIELDS (Space Hazards Induced Near Earth by Large Dynamic Storms) Framework: https://www.lanl.gov/projects/shields/
RAM-SCB User Manual: https://github.com/lanl/RAM-SCB/blob/master/doc/RAM_SCB.pdf

Publications :

  • Jordanova, V. K., J. U. Kozyra, G. V. Khazanov, A. F. Nagy, C. E. Rasmussen, and M.‐C. Fok (1994), A bounce‐averaged kinetic model of the ring current ion population, Geophys. Res. Lett., 21(25), 2785-2788. doi:10.1029/94GL02695.
  • Jordanova, V. K., Y. S. Miyoshi, S. Zaharia, M. F. Thomsen, G. D. Reeves, D. S. Evans, C. G. Mouikis, and J. F. Fennell (2006), Kinetic simulations of ring current evolution during the Geospace Environment Modeling challenge events, J. Geophys. Res., 111, A11S10, doi:10.1029/2006JA011644.
  • Jordanova, V. K., S. Zaharia, and D. T. Welling (2010), Comparative study of ring current development using empirical, dipolar, and self‐consistent magnetic field simulations, J. Geophys. Res., 115, A00J11, doi:10.1029/2010JA015671.
  • Zaharia, S., C. Z. Cheng, and K. Maezawa (2004),3‐D force‐balanced magnetospheric configurations, Ann. Geophys., 22,251-265,https://doi.org/10.5194/angeo-22-251-2004
  • Zaharia, S., V. K. Jordanova, M. F. Thomsen, and G. D. Reeves (2006), Self‐consistent modeling of magnetic fields and plasmas in the inner magnetosphere: Application to a geomagnetic storm, J. Geophys. Res., 111, A11S14, doi:10.1029/2006JA011619.
  • Zaharia, S., V. K. Jordanova, D. Welling, and G. Tóth (2010), Self‐consistent inner magnetosphere simulation driven by a global MHD model, J. Geophys. Res., 115, A12228, doi: 10.1029/2010JA015915.
  • Yu, Y., V. Jordanova, S. Zaharia, J. Koller, J. Zhang, and L. M. Kistler (2012), Validation study of the magnetically self‐consistent inner magnetosphere model RAM‐SCB, J. Geophys. Res., 117, A03222, doi: 10.1029/2011JA017321.
  • Yu, Y., et al (2019), Initial Results From the GEM Challenge on the Spacecraft Surface Charging Environment, Space Weather, 17, 299-312.
  • Engel, M. A., Morley, S. K., Henderson, M. G., Jordanova, V. K., Woodroffe, J. R., & Mahfuz, R. (2019). Improved simulations of the inner magnetosphere during high geomagnetic activity with the RAM-SCB model. Journal of Geophysical Research: Space Physics, 124, 4233–4248. doi:10.1029/2018JA026260
  • Model Access Information :

    Access URL: https://ccmc.gsfc.nasa.gov/requests/IM/RAM-SCB/ramscb_user_registration.php
    Access URL Name: Runs-on-Request
    Repository ID: spase://CCMC/Repository/NASA/GSFC/CCMC
    Availability: online
    AccessRights: OPEN
    Format: HTML
    Encoding: None

    Access URL: https://github.com/lanl/RAM-SCB
    Access URL Name: Public Repository
    Repository ID: spase://CCMC/Repository/NASA/GSFC/CCMC
    Availability: online
    AccessRights: OPEN
    Format: HTML
    Encoding: None

    Linked to Other Spase Resource(s) (example: another SimulationModel) :

    CMR Footer

    Curator: Chiu Wiegand | NASA Official: Dr. Masha Kuznetsova | Privacy and Security Notices | Accessibility | CCMC Data Collection Consent Agreement