CMR Header

CCMC Metadata Registry (CMR)

Menu Page

Go to:

CMR: View Simulation Model Info

iPATH (2)

Improved Particle Acceleration and Transport in the Heliosphere

Model Description

The iPATH model is a 2-D MHD SEP model that simulates Diffusive Shock Acceleration (DSA) at CME-driven shocks and follows the subsequent transport of energetic particles through the inner heliosphere. IPATH models the background solar wind and CME-driven shocks at the ecliptic plane starting at 0.05 AU and produces time profiles of SEP intensity spectra and pitch angle distributions as outputs at selected vantage points (e.g., at Earth or Mars). It considers both perpendicular and parallel diffusive factors of energetic particles, which come from Nonlinear Guiding Center Theory (NLGC) and Quasi-Linear Theory (QLT) respectively. The transport module is a Monte Carlo code which follows test particles through space described by the FTE and is set up for parallel computations. This model is improved over the original PATH model which was 1-D.

iPATH first creates the shock perturbation along the inner boundary, and propagates the CME outward with the forward shock region tracked with a 2-D onion-shell model. For each time step, a new outer shell is created based on the shock speed and all previous shells convect and adiabatically expand with the solar wind. Then accelerated particle distributions are calculated along the whole shock front, based on the diffusive shock acceleration. Accelerated particles are then allowed to diffuse back to the shock complex, and between each parcel behind the shock via parallel and perpendicular diffusion. This gives the distribution function in each shock parcel at each time step, which is important for the ESP phase when the shock arrives at the observer. Once a particle has moved a certain distance during a single time step, it escapes the shock and is transported through the unperturbed solar wind via a focused transport scheme, which includes terms for weak scattering and cross-field diffusion from the random walk of magnetic field lines. The FTE is solved using a backward stochastic differential equation approach until a steady state is found where ensemble averages of many test particle paths give the full particle distribution function.

Model Figure(s) :

Model Inputs Description

•	Background solar wind parameters based on 1 AU observations (solar wind density, speed, temperature, and magnetic field strength)

•	CME parameters (CME speed, width, location, and perturbation duration)

•	Turbulence parameters (turbulence level, turbulence spectral parameters, and radial dependencies of these parameters, for advanced users)

•	Suprathermal seed particle input (suprathermal particle energy spectral parameters)

•	Observer locations (radius, longitude)

Model Outputs Description

•	Time profiles for energetic proton/heavy ion intensities (differential fluxes) at a wide energy range (from hundreds of keVs to GeVs) at the chosen observer locations

•	Event-integrated fluences (in MeV-1cm-2)

•	Time profiles for integral flux above certain energies (in pfu)

•	Figures for flux/fluence results and CME/shock configurations.

Model Caveats

Like other models using CME information as inputs, iPATH’s performance as a prediction model relies on how early we can acquire good quality CME parameters from observations. As the inner boundary is set at 0.05 AU (10 Rsun) and the shock is formed even further in, it cannot capture the SEP acceleration happening in the low corona and does not produce output for the first couple of hours of the events. iPATH is not able to fully capture the effects of previous CMEs without modifications on the model so the operational version is best suited for single CME events. The background solar wind used in iPATH is a simple homogeneous Parker spiral model, which cannot capture some complex solar wind geometries in a specific event. But this simplification is efficient for general prediction purposes.

Change Log


	
	 
	

Model Acknowledgement/Publication Policy (if any)


	
	
	

Model Domains:

Solar
Heliosphere.Inner_Heliosphere

Space Weather Impacts:

Near-earth radiation and plasma environment (aerospace assets functionality)
Solar energetic particles - SEPs (human exploration, aviation safety, aerospace assets functionality)

Phenomena :

Solar_Energetic_Particles

Simulation Type(s):

Physics-based
Physics-based.MHD

Temporal Dependence Possible? (whether the code results depend on physical time?)

true

Model is available at?

CCMC

Source code of the model is publicly available?

false

CCMC Model Status (e.g. onboarding, use in production, retired, only hosting output, only source is available):

production

Code Language:

Fortran, Python, Bash script

Regions (this is automatically mapped based on model domain):

Heliosphere.Inner
Sun

Contacts :

Gang.Li, ModelDeveloper
Junxiang.Hu, ModelDeveloper
Zheyi.Ding, ModelDeveloper
Gary.Zank, ModelDeveloper
Claudio.Corti, ModelHostContact
M.Leila.Mays, ModelHostContact

Acknowledgement/Institution :

Relevant Links :

Publications :

  • Modeling Particle Acceleration and Transport at a 2-D CME-Driven Shock
  • Modeling a Single SEP Event from Multiple Vantage Points Using the iPATH Model
  • Modeling the 2017 September 10 solar energetic particle event using the iPATH model
  • Modeling the 2012 May 17 Solar Energetic Particle Event Using the AWSoM and iPATH Models
  • Modeling the East‐West Asymmetry of Energetic Particle Fluence in Large Solar Energetic Particle Events Using the iPATH Model
  • Model Access Information :

    Access URL: https://iswa.ccmc.gsfc.nasa.gov/iswa_data_tree/model/heliosphere/iPATH/2.X/
    Access URL Name: Continuous/RT Run (ISWA data tree)
    Repository ID: spase://CCMC/Repository/NASA/GSFC/CCMC
    Availability: online
    AccessRights: OPEN
    Format: HTML
    Encoding: None

    Access URL: http://iswa.ccmc.gsfc.nasa.gov/IswaSystemWebApp/index.jsp?i_1=717&l_1=890&t_1=391&w_1=600&h_1=450&s_1=0&i_2=718&l_2=125&t_2=393&w_2=700&h_2=450&s_2=1_0
    Access URL Name: Continuous/RT Run (ISWA layout)
    Repository ID: spase://CCMC/Repository/NASA/GSFC/CCMC
    Availability: online
    AccessRights: OPEN
    Format: HTML
    Encoding: None

    Linked to Other Spase Resource(s) (example: another SimulationModel) :

    CMR Footer

    Curator: Chiu Wiegand | NASA Official: Dr. Masha Kuznetsova | Privacy and Security Notices | Accessibility | CCMC Data Collection Consent Agreement